Coloring of integer distance graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coloring of integer distance graphs

An integer distance graph is a graph G(D) with the set of integers as vertex set and with an edge joining two vertices u and v if and only if ju ? vj 2 D where D is a subset of the positive integers. We determine the chromatic number (D) of G(D) for some nite distance sets D such as sets of consecutive integers and special sets of cardinality 4.

متن کامل

2-Distance Colorings of Integer Distance Graphs

A 2-distance k-coloring of a graph G is a mapping from V (G) to the set of colors {1, . . . , k} such that every two vertices at distance at most 2 receive distinct colors. The 2-distance chromatic number χ2(G) of G is then the mallest k for which G admits a 2-distance k-coloring. For any finite set of positive integers D = {d1, . . . , dk}, the integer distance graph G = G(D) is the infinite g...

متن کامل

Distance Graphs and T-Coloring

We discuss relationships among T-colorings of graphs and chromatic numbers, fractional chromatic numbers, and circular chromatic numbers of distance graphs. We first prove that for any finite integral set T that contains 0, the asymptotic T-coloring ratio R(T ) is equal to the fractional chromatic number of the distance graph G(Z, D), where D=T&[0]. This fact is then used to study the distance ...

متن کامل

2-distance Coloring of Sparse Graphs

A 2-distance coloring of a graph is a coloring of the vertices such that two vertices at distance at most 2 receive distinct colors. We prove that every graph with maximum degree Δ at least 4 and maximum average degree less that 73 admits a 2-distance (Δ + 1)-coloring. This result is tight. This improves previous known results of Dolama and Sopena.

متن کامل

Circular Coloring for Graphs with Distance Constraints

Let G = (V,E) be a simple un-weighted graph, and let → d= (d1, d2, · · ·, dm) be a sequence of positive reals. For a positive real r, let Sr denote the circle on R 2 centered at the origin with circumference r. A circular r−coloring for G with distance constraint → d is a mapping f : V (G) → Sr such that |f(u) − f(v)|r ≥ di, whenever the distance between u and v in G is i (where |x− y|r is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(98)00099-5